Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Indoor Air ; 32(10): e13118, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2088231

ABSTRACT

SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 µm, 7.0-12.0 µm, >10 µm, and <100 µm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , COVID-19/epidemiology , RNA, Viral , Prospective Studies , Respiratory Aerosols and Droplets
2.
Commun Med (Lond) ; 2: 65, 2022.
Article in English | MEDLINE | ID: covidwho-1947557

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and fatalities globally since its emergence in late 2019. The virus was first detected in Finland in January 2020, after which it rapidly spread among the populace in spring. However, compared to other European nations, Finland has had a low incidence of SARS-CoV-2. To gain insight into the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020, we investigated the phylogeographic and -dynamic history of the virus. Methods: The origins of SARS-CoV-2 introductions were inferred via Travel-aware Bayesian time-measured phylogeographic analyses. Sequences for the analyses included virus genomes belonging to the B.1 lineage and with the D614G mutation from countries of likely origin, which were determined utilizing Google mobility data. We collected all available sequences from spring and fall peaks to study lineage dynamics. Results: We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain. Conclusions: A single introduction from Spain might have seeded one-third of cases in Finland during spring in 2020. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and the effects of early intervention and public health measures.

3.
BMJ Glob Health ; 7(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1846372

ABSTRACT

OBJECTIVE: To estimate scent dogs' diagnostic accuracy in identification of people infected with SARS-CoV-2 in comparison with reverse transcriptase polymerase chain reaction (RT-PCR). We conducted a randomised triple-blinded validation trial, and a real-life study at the Helsinki-Vantaa International Airport, Finland. METHODS: Four dogs were trained to detect COVID-19 using skin swabs from individuals tested for SARS-CoV-2 by RT-PCR. Our controlled triple-blinded validation study comprised four identical sets of 420 parallel samples (from 114 individuals tested positive and 306 negative by RT-PCR), randomly presented to each dog over seven trial sessions. In a real-life setting the dogs screened skin swabs from 303 incoming passengers all concomitantly examined by nasal swab SARS-CoV-2 RT-PCR. Our main outcomes were variables of diagnostic accuracy (sensitivity, specificity, positive predictive value, negative predictive value) for scent dog identification in comparison with RT-PCR. RESULTS: Our validation experiments had an overall accuracy of 92% (95% CI 90% to 93%), a sensitivity of 92% (95% CI 89% to 94%) and a specificity of 91% (95% CI 89% to 93%) compared with RT-PCR. For our dogs, trained using the wild-type virus, performance was less accurate for the alpha variant (89% for confirmed wild-type vs 36% for alpha variant, OR 14.0, 95% CI 4.5 to 43.4). In the real-life setting, scent detection and RT-PCR matched 98.7% of the negative swabs. Scant airport prevalence (0.47%) did not allow sensitivity testing; our only SARS-CoV-2 positive swab was not identified (alpha variant). However, ad hoc analysis including predefined positive spike samples showed a total accuracy of 98% (95% CI 97% to 99%). CONCLUSIONS: This large randomised controlled triple-blinded validation study with a precalculated sample size conducted at an international airport showed that trained scent dogs screen airport passenger samples with high accuracy. One of our findings highlights the importance of continuous retraining as new variants emerge. Using scent dogs may present a valuable approach for high-throughput, rapid screening of large numbers of people.


Subject(s)
COVID-19 , SARS-CoV-2 , Airports , Animals , COVID-19/diagnosis , Dogs , Humans , Odorants
5.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786497

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1. and BA.1.1. lineages to Finland were detected early December 2021, and comprised the majority over Delta variant in 3 weeks in the capital region. Our sequence analysis demonstrates emergence of a large cluster of BA.1.1 in community transmission.

6.
Emerg Infect Dis ; 28(6): 1229-1232, 2022 06.
Article in English | MEDLINE | ID: covidwho-1775623

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1 and BA.1.1. lineages to Finland were detected in early December 2021. Within 3 weeks, Omicron overtook Delta as the most common variant in the capital region. Sequence analysis demonstrated the emergence and spread through community transmission of a large cluster of BA.1.1 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Humans , SARS-CoV-2/genetics
7.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496966

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Finland/epidemiology , Humans , Incidence , Phylogeny
8.
PLoS One ; 16(5): e0251661, 2021.
Article in English | MEDLINE | ID: covidwho-1238764

ABSTRACT

BACKGROUND: Understanding the false negative rates of SARS-CoV-2 RT-PCR testing is pivotal for the management of the COVID-19 pandemic and it has implications for patient management. Our aim was to determine the real-life clinical sensitivity of SARS-CoV-2 RT-PCR. METHODS: This population-based retrospective study was conducted in March-April 2020 in the Helsinki Capital Region, Finland. Adults who were clinically suspected of SARS-CoV-2 infection and underwent SARS-CoV-2 RT-PCR testing, with sufficient data in their medical records for grading of clinical suspicion were eligible. In addition to examining the first RT-PCR test of repeat-tested individuals, we also used high clinical suspicion for COVID-19 as the reference standard for calculating the sensitivity of SARS-CoV-2 RT-PCR. RESULTS: All 1,194 inpatients (mean [SD] age, 63.2 [18.3] years; 45.2% women) admitted to COVID-19 cohort wards during the study period were included. The outpatient cohort of 1,814 individuals (mean [SD] age, 45.4 [17.2] years; 69.1% women) was sampled from epidemiological line lists by systematic quasi-random sampling. The sensitivity (95% CI) for laboratory confirmed cases (repeat-tested patients) was 85.7% (81.5-89.1%) inpatients; 95.5% (92.2-97.5%) outpatients, 89.9% (88.2-92.1%) all. When also patients that were graded as high suspicion but never tested positive were included in the denominator, the sensitivity (95% CI) was: 67.5% (62.9-71.9%) inpatients; 34.9% (31.4-38.5%) outpatients; 47.3% (44.4-50.3%) all. CONCLUSIONS: The clinical sensitivity of SARS-CoV-2 RT-PCR testing was only moderate at best. The relatively high false negative rates of SARS-CoV-2 RT-PCR testing need to be accounted for in clinical decision making, epidemiological interpretations, and when using RT-PCR as a reference for other tests.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , Adult , Aged , COVID-19 Nucleic Acid Testing/methods , False Negative Reactions , Female , Humans , Male , Middle Aged , Random Allocation , Reagent Kits, Diagnostic/standards
9.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1203709

ABSTRACT

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Immunoenzyme Techniques , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Neutralization Tests , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity
10.
Int J Occup Med Environ Health ; 34(2): 239-249, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1181806

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of safety guidelines in the workplace, the authors analyzed the work-related exposure to SARS-CoV-2 and the source of COVID­19 infections among healthcare workers (HCWs), together with the use of personal protective equipment (PPE). MATERIAL AND METHODS: A cross-sectional prospective study was conducted in tertiary hospitals in the Uusimaa region, Finland, with 1072 volunteers being enrolled in the study from among the HCWs at the Helsinki University Hospital. Overall, 866 (80.8%) HCWs (including 588 nurses, 170 doctors, and 108 laboratory and medical imaging nurses) completed the questionnaire by July 15, 2020, with 52% of the participants taking care of COVID­19 patients. The participants answered a structured questionnaire regarding their use of PPE, the ability to follow safety guidelines, exposure to COVID­19, and the source of potential COVID­19 infections. The participants with COVID­19 symptoms were tested with the SARS-CoV-2 realtime polymerase chain reaction method. All infected participants were contacted, and their answers were confirmed regarding COVID­19 exposure. RESULTS: In total, 41 (4.7%) participants tested positive for SARS-CoV-2, with 22 (53.6%) of infections being confirmed or likely occupational, and 12 (29.3%) originating from colleagues. In 14 cases (63.6%), occupational infections occurred while using a surgical mask, and all infections originating from patients occurred while using a surgical mask or no mask at all. No occupational infections were found while using an FFP2/3 respirator and following aerosol precautions. The combined odds ratio for working at an intensive care unit, an emergency department, or a ward was 3.4 (95% CI: 1.2-9.2, p = 0.016). CONCLUSIONS: A high infection rate was found among HCWs despite safety guidelines. Based on these findings, the authors recommend the use of FFP2/3 respirators in all patient contacts with confirmed or suspected COVID­19, along with the use of universal masking, also in personnel rooms. Int J Occup Med Environ Health. 2021;34(2):239-49.


Subject(s)
COVID-19/epidemiology , Disease Transmission, Infectious/prevention & control , Health Personnel , Personal Protective Equipment/standards , SARS-CoV-2 , Adult , COVID-19/transmission , Cross-Sectional Studies , Female , Finland/epidemiology , Humans , Male , Prospective Studies
11.
J Mol Diagn ; 23(4): 407-416, 2021 04.
Article in English | MEDLINE | ID: covidwho-1152514

ABSTRACT

Mitigation of the ongoing coronavirus disease 2019 (COVID-19) pandemic requires reliable and accessible laboratory diagnostic services. In this study, the performance of one laboratory-developed test (LDT) and two commercial tests, cobas SARS-CoV-2 (Roche) and Amplidiag COVID-19 (Mobidiag), were evaluated for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in respiratory specimens. A total of 183 specimens collected from suspected COVID-19 patients were studied with all three methods to compare their performance. In relation to the reference standard, which was established as the result obtained by two of the three studied methods, the positive percent agreement was highest for the cobas test (100%), followed by the Amplidiag test and the LDT (98.9%). The negative percent agreement was lowest for the cobas test (89.4%), followed by the Amplidiag test (98.8%), and the highest value was obtained for the LDT (100%). The dilution series of positive specimens, however, suggests significantly higher sensitivity for the cobas assay in comparison with the other two assays, and the low negative percent agreement value may be due to the same reason. In general, all tested assays performed adequately. Clinical laboratories need to be prepared for uninterrupted high-throughput testing during the coming months to mitigate the pandemic. To ensure no interruption, it is critical that clinical laboratories maintain several simultaneous platforms in their SARS-CoV-2 nucleic acid testing.


Subject(s)
COVID-19 Testing/methods , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Humans , Nucleic Acid Amplification Techniques/methods
12.
Travel Med Infect Dis ; 39: 101949, 2021.
Article in English | MEDLINE | ID: covidwho-970990

ABSTRACT

BACKGROUND: Exposure, risks and immunity of healthcare workers (HCWs), a vital resource during the SARS-CoV-2 pandemic, warrant special attention. METHODS: HCWs at Helsinki University Hospital, Finland, filled in questionnaires and provided serum samples for SARS-CoV-2-specific antibody screening by Euroimmun IgG assay in March-April 2020. Positive/equivocal findings were confirmed by Abbott and microneutralization tests. Positivity by two of the three assays or RT-PCR indicated a Covid-19 case (CoV+). RESULTS: The rate of CoV(+) was 3.3% (36/1095) and seropositivity 3.0% (33/1095). CoV(+) was associated with contact with a known Covid-19 case, and working on a Covid-19-dedicated ward or one with cases among staff. The rate in the Covid-19-dedicated ICU was negligible. Smoking and age <55 years were associated with decreased risk. CoV(+) was strongly associated with ageusia, anosmia, myalgia, fatigue, fever, and chest pressure. Seropositivity was recorded for 89.3% of those with prior documented RT-PCR-positivity and 2.4% of those RT-PCR-negative. The rate of previously unidentified cases was 0.7% (8/1067) and asymptomatic ones 0% (0/36). CONCLUSION: Undiagnosed and asymptomatic cases among HCWs proved rare. An increased risk was associated with Covid-19-dedicated wards. Particularly high rates were seen for wards with liberal HCW-HCW contacts, highlighting the importance of social distancing also among HCWs.


Subject(s)
COVID-19/epidemiology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/pathology , COVID-19/prevention & control , Female , Finland/epidemiology , Hospitals, University , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
14.
J Clin Virol ; 131: 104614, 2020 10.
Article in English | MEDLINE | ID: covidwho-731821

ABSTRACT

BACKGROUND: Rapid sample-to-answer tests for detection of SARS-CoV-2 are emerging and data on their relative performance is urgently needed. OBJECTIVES: We evaluated the analytical performance of two rapid nucleic acid tests, Cepheid Xpert® Xpress SARS-CoV-2 and Mobidiag Novodiag® Covid-19, in comparison to a combination reference of three large-scale PCR tests. Moreover, utility of the Novodiag® test in tertiary care emergency departments was assessed. RESULTS: In the preliminary evaluation, analysis of 90 respiratory samples resulted in 100% specificity and sensitivity for Xpert®, whereas analysis of 107 samples resulted in 93.4% sensitivity and 100% specificity for Novodiag®. Rapid SARS-CoV-2 testing with Novodiag® was made available for four tertiary care emergency departments in Helsinki, Finland between 18 and 31 May, coinciding with a rapidly declining epidemic phase. Altogether 361 respiratory specimens, together with relevant clinical data, were analyzed with Novodiag® and reference tests: 355/361 of the specimens were negative with both methods, and 1/361 was positive in Novodiag® and negative by the reference method. Of the 5 remaining specimens, two were negative with Novodiag®, but positive with the reference method with late Ct values. On average, a test result using Novodiag® was available nearly 8 hours earlier than that obtained with the large-scale PCR tests. CONCLUSIONS: While the performance of novel sample-to-answer PCR tests need to be carefully evaluated, they may provide timely and reliable results in detection of SARS-CoV-2 and thus facilitate patient management including effective cohorting.


Subject(s)
Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Emergency Service, Hospital/statistics & numerical data , Female , Finland , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/virology , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Tertiary Healthcare/statistics & numerical data , Young Adult
15.
Euro Surveill ; 25(18)2020 05.
Article in English | MEDLINE | ID: covidwho-197012

ABSTRACT

Antibody-screening methods to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) need to be validated. We evaluated SARS-CoV-2 IgG and IgA ELISAs in conjunction with the EUROLabworkstation (Euroimmun, Lübeck, Germany). Overall specificities were 91.9% and 73.0% for IgG and IgA ELISAs, respectively. Of 39 coronavirus disease patients, 13 were IgG and IgA positive and 11 IgA alone at sampling. IgGs and IgAs were respectively detected at a median of 12 and 11 days after symptom onset.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , Reagent Kits, Diagnostic/standards , Adolescent , Adult , Aged , Aged, 80 and over , Automation, Laboratory , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques/standards , Coronavirus Infections/epidemiology , Finland/epidemiology , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
16.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: covidwho-18570

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL